
Journal of Statistical Physics, Vol. 49, Nos. 3/4, 1987 

The Role of Dimensionality in the Kinetic 
Ising Model of Spinodal Decomposition: 
Evidence from Zero-Temperature Quenches 

Andrew F. Dale  1 and Oriol T. Vails  ~ 

Received May 7, 1987; revision received June 29, 1987 

We study a three-dimensional Ising lattice gas model with spin-exchange 
dynamics quenched from infinite to zero temperature. We consider a wide range 
of values of the binary composition (i.e., magnetization) and annealed vacancy 
concentration. We find that, as in two dimensions, the system freezes in a 
configuration very far from equilibrium, and that the interface energy per bond 
in the frozen state, which is very large, in all cases takes very nearly the same 
values as in two dimensions. We discuss the implications of these results 
regarding the irrelevance of dimensionality in this problem. 
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1. I N T R O D U C T I O N  

There  is a widespread  expec ta t ion  that  the laws tha t  descr ibe  the late stages 
of d o m a i n  g rowth  in an uns tab le  system m a y  be universal  (see Refs. 1 for 
recent  reviews). The  ma in  reason  for this is an ana logy  with second-o rde r  
phase  t ransi t ions .  Even though  there is evidence (2'3) to suppo r t  this expec- 
ta t ion  to some extent,  the d o m a i n - g r o w t h  universal i ty  classes seem to be 
more  restr ict ively defined than  in cri t ical  phenomena ,  in that  the n u m b e r  of 
re levant  var iables  is larger.  A m o n g  the factors  k n o w n  to be re levant  are, 
for example ,  the n u m b e r  of  coexis t ing l ow- t empera tu r e  phases,  (2'4~ the con- 
servat ion  laws for the o rde r  p a r a m e t e r  (see Refs. 1 for numerous  references 
to this point ) ,  the n u m b e r  of c o m p o n e n t s  of the o rde r  pa ramete r ,  ~5) the 
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presence of a lattice structure, t6~ and perhaps the quench rate, the range of 
interactions, and the concentration. 

On the other hand, the dimensionality, which plays a most crucial role 
in critical phenomena, is not always a relevant variable from the viewpoint 
of domain growth. It is known, for example, that the Cahn-Allen (7) 1/2 
exponent power law for growth after a deep temperature quench in a 
system with a nonconserved order parameter holds in any dimensionality 
d, provided only that d >  1. This can be attributed to the fact that the 
Cahn Allen growth process is driven by the curvature of the growing 
domains. However, the important question of the relevance of dimen- 
sionality has not been the subject of any general discussion. 

This question is of more than academic interest. Numerical 
simulations are very extensively used to study nonequilibrium phenomena. 
Experience has shown that very large numbers of runs and large-size 
systems are often required to obtain reliable results. Simulations in three 
dimensions are necessarily less extensive than in two because of the greatly 
increased costs in computer time. A degree of confidence in the irrelevance 
of dimensionality is then needed to make the leap from simulation results 
in two dimensions to the experimental, usually three-dimensional world. 

In this paper we attempt to throw some light on some aspects of this 
subject. We consider a three-dimensional Ising lattice-gas model with a 
conserved order parameter (i.e., Kawasaki spin-exchange dynamics (8)) 
quenched from infinite to zero temperature. In two dimensions this system 
freezes after such a quench (see, for example, Ref. 9) in a relatively short 
time and in a fairly disordered structure, that is, a very large amount of 
interface energy is locked in the frozen state. In the present work we study 
by Monte Carlo (MC) simulation a very wide range of concentrations in 
the binary mixture represented by the Ising lattice gas model, with 
annealed vacancies present in various amounts. We find not only that the 
system in all cases freezes when quenched to zero temperature, but, more 
important, that the freezing structure is the same in three and in two 
dimensions in that the amount of interface energy locked in the frozen state 
is, for all binary compositions and vacancy concentrations studied here, 
numerically nearly the same in three and in two dimensions. This similarity 
extends to the energy of the system as a function of Monte Carlo time. 
Thus, dimensionality is quantitatively irrelevant here even though order 
extends only to rather short distances. 

We also believe that our results are a strong indication, but not a con- 
clusive proof, that the growth law for this system is independent of the 
dimensionality for quenches to all temperatures. However, the growth law 
for quenches to finite temperature in two dimensions for this system is still 
a matter of dispute. An old argument by Lifshitz and Slyozov (~~ gives 
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L ( t )  ~ t a with a = 1/3 [L(t)  is the domain size and t the time]. Experimen- 
tally, power law fits give values of a between 0.09 and 0.3 for alloysfl Many 
experimental results can be fit to a logarithmic law, (9'13) which might follow 
from the fact that the growth mechanism involves an activated energy 
related to the curvature of the domain walls. We do not wish to address 
this controversy (14) here. In our opinion, however, the quantitative 
agreement between zero-temperature quenches in two and three dimensions 
is a strong (although not conclusive) argument for the dimensionality being 
an irrelevant parameter for this problem. Regardless of the exact form of 
the growth law, at least for quenches to low temperatures the growth will 
be dominated by the activated processes unfreezing the locked-in surface 
energy, which, as shown here, is present in the same amount in two and 
three dimensions. The activation energies involved differ in two and three 
dimensions by factors involving the coordination number that are taken 
into account [-see Eq. (4) below] in the standard normalization of the 
energy. This conclusion seems to be borne out by the rather limited finite- 
temperature simulation results available in three dimensions. (15) 

2. M O D E L  A N D  R E S U L T S  

As stated above, we study the standard spin-exchange kinetic Ising 
model (SEKI). (8) In the absence of vacancies, we introduce Ising variables 
ai, which are defined on the sites i of a cubic lattice and take the values 
cr~ = _+ 1. These correspond to two different chemical species A and B. We 
will include (as was done in Ref. 9 in two dimensions) only nearest 
neighbor interactions, with coupling K =  - / ~ J =  - J / K T ,  where J is the 
negative exchange constant and /~ the inverse temperature. The nearest 
neighbor exchange probability is given by 

Wij = i l l  - tanh(fl zlE/2) ] (1) 

where A E  is the energy difference between configurations before and after 
the exchange. In the case /3--* oe considered here W U is a step function. 
Whenever A E =  0 we take W• = 1/2. Vacancies are included by allowing ai 
to take a third value ~ri= 0. We consider here only annealed vacancies, 
which are allowed to exchange positions with neighboring A or B atoms 
according to the probability given by Eq. (1). We use standard MC 
procedures. The pair of spins to be exchanged is chosen at random, to 
avoid spurious correlations. 

2 See, e.g., Ref. 11. An extensive review can be found in Ref. 12. 
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We have obtained results for many different values of the composition 
c and vacancy concentration v. We define these quantities as 

and 

NA 
c - - -  (2) 

NA + NB 

N~ 
v = (3) 

N A -k- NB + N~ 

where NA, NB, and N v are the number of A particles, B particles, and 
vacancies, respectively. Note that NA+NB +Nv=N, where N is the 
number of sites. 

Since preliminary runs indicated that in three as in two dimensions the 
system exhibits only short-range order in the frozen state, we have focused 
here on the nearest neighbor correlation function: 

~(t) = ~  ( a i a i + ~ )  (4) 

where z is the number of nearest neighbors (six) and 6 represents a lattice 
vector connecting nearest neighbors. Following Ref. 9, we introduce a 
quantity r(t), which measures how far the system has progressed toward 
equilibrium at time t. A convenient definition is 

~ ( t ) - ~ ( 0 )  
r ( t )  - (5) 

~ E - ~ ( 0 )  

where eE= 1 -  v is the equilibrium value of e at zero temperature. At 
infinite temperature one has 5(0)= [ ( 1 -  v ) ( 1 -  2c)] 2. 

Since ~(t) is the energy per bond in units of J, the quantity e E - e ( t )  is, 
in the same units, the amount  of interface energy present in the system at 
time t, while e E - e ( ~ )  represents the amount of interface energy locked in 
the frozen state of the system. This quantity would be zero in the limit of 
very large N if the system reached equilibrium, in which case r(t) would 
tend to unity at long times. This is what would happen if the model 
discussed here had been quenched to a nonzero temperature, although the 
time and size scales required to establish this conclusively would be 
extremely large. 

In all cases we have started the quench from infinite temperature 
( K =  0). We have obtained data for c = 1/2, 1/3, 1/6, and 1/10 and v = 0, 
1/10, and 1/4. For  all values the system freezes after a few hundred MC 
steps (MCS). We carried our simulations out to several thousand MCS. 
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Because of the short range of the ordering, we found a value of N =  253 
amply sufficient to eliminate finite-size effects, which we checked by 
obtaining data also at N = 203 and in several cases at N =  323. The results 
are averaged over several runs. Typically about  1(~15 runs are required to 
obtain at least 5 % precision for e(t)-e(O). 

The most striking feature of our results is that they are virtually 
indistinguishable from those obtained in two dimensions. (9) This can first 
be seen in Table I, where we show e ( o o ) -  e(0) and r(oo) for tbe values of c 
and v indicated above. One can see that in all cases the small differences 
(which appear unsystematic) are nearly compatible with the combined 
uncertainties of the numerical results. It is also noteworthy that there is no 
qualitative difference between critical and noncritical quenches, and that 
annealed vacancies do not contribute in any way to unlocking the freeze. 
There is no evidence of any change in the behavior of r(oo) in the small-c 
(c = 1/10) case, where initially only monomers  are present, nor of any any 
effects related to percolation. In three as in two (9) dimensions these factors 
appear to have only secondary importance. Since uncertainties have been 
estimated rather conservatively, we believe that actual differences of order 
of 5 % may exist between two- and three-dimensional results. For  the par- 
ticular case where no vacancies are present and the concentration is 50%, 
our results fully confirm those of Ref. 16, where it was found that for v = 0, 
c = 1/2 the average number  of satisfied bonds in the frozen configuration is 
very approximately independent of d for 2 ~ d ~< 5. 

Tablel. The Quant i t iese(oo)-e(0)  andr(oo), defined in Eqs. (4)  and (5),  
f o r  Several Values of Composition c and Vacancy Concentration v 

[Eqs. (2) and (3 ) ]  a 

c v e ( ~ ) -  e(O) r(oo) 

1/2 0 0.46 (0.46) 0.46 (0.46) 
1/2 1/10 0.41 (0.42) 0.46 (0.47) 
1/2 1/4 0.38 (0.37) 0.51 (0.50) 

1/3 1/10 0.35 (0.38) 0.44 (0.45) 
1/3 1/4 0.34 (0.33) 0.50 (0.48) 

1/6 1/10 0.23 (0.20) 0.41 (0.36) 
1/6 1/4 0.24 (0.22) 0.48 (0.44) 

1/10 1/10 0.15 (0.14) 0.39 (0.36) 
1/10 1/4 0.19 (0.17) 0.47 (0.44) 

o The numbers in parentheses are the corresponding two-dimensional results, taken from 
Ref. 9. 

822/'49/3-4- t7 
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The morphology of the frozen state of the system in three dimensions 
is very much the same as in two, and is characterized by a highly con- 
voluted percolative structure near c = 1/2 and, at small c, very many small 
and fairly compact but not droplet like domains of the minority component 
embedded in a matrix of the majority phase. Vacancies have some tendency 
to concentrate near the boundaries between A and B domains. We do not 
include here any figures of the frozen structure, as cross sections are 
extremely similar to the two-dimensional structures depicted in Figs. 1 and 
2 of Ref. 9. In three dimensions, however, domains that appear disconnec- 
ted in cross-section view may actually be connected in the third dimension, 
often forming intricate three-dimensional structures. 

The similarity between the two- and three-dimensional results is not 
limited to the t ~ oo limit. We have obtained data for e(t) at time bins 
separated by At = 10 MCS. For all values of c and v studied here, we find 
that the resulting values of e(t) are very close to the corresponding two- 
dimensional results. Thus, any characteristic time one may define to 
characterize the approach of the system to its t ~ oo value takes similar 
values in two and in three dimensions. If one chooses, as in Ref. 9, to define 

by the condition e(~)=0.97~(oo), one finds that ~ is in the range of 
10-60 MCS, depending on c and v values. 

3. C O N C L U S I O N S  

We have presented in this paper detailed evidence that dimensionality 
is an irrelevant parameter for quenches to zero temperature in the spin- 
exchange kinetic Ising model. If, as seems reasonable, the growth law for 
quenches to nonzero temperature is predominately determined by the 
freeing up of the interface energy by means of activated processes that 
cannot operate at zero temperature, the implication is that the growth law 
in three and two dimensions will be the same. Our arguments cannot be 
considered a rigorous proof. However, given the high degree of difficulty 
encountered in numerically determining this law in two dimensions, the 
practical importance of universality is considerable. 

More generally, we believe that the reason for the irrelevance of 
dimensionality in this problem is due to the fact that, as in the Cahn-Allen 
process, the growth is curvature-driven, as shown in Ref. 9. This argument 
does not explain, however, the detailed quantitative agreement in e(t). 
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